Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xi Peng, ${ }^{\text {a }}$ Hui-Zhong Kou, ${ }^{\text {a }}$ * Ming Xiong ${ }^{\text {b }}$ and Ru-Ji Wang ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China, and ${ }^{\mathbf{b}}$ Geosciences Laboratories, China
University of Geosciences, Beijing 100083, People's Republic of China

Correspondence e-mail:
kouhz@mail.tsinghua.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.041$
$w R$ factor $=0.091$
Data-to-parameter ratio $=22.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

A cyano-bridged binuclear Cu -Fe complex based on nitroprusside

Abstract

The title compound, μ-cyano- $1: 2 \kappa^{2} C$: N-tetracyano- $1 \kappa C$ -[3,7-bis(2-aminoethyl)-1,3,5,7-tetraazabicyclo[3,3,2]decane$\left.2 \kappa^{4} N^{1,3,5,7}\right]$-nitrosyl-1 κN-copper(II)iron(II) monohydrate, $\left[\mathrm{CuFe}(\mathrm{CN})_{5}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{6}\right)(\mathrm{NO})\right] \cdot \mathrm{H}_{2} \mathrm{O}$, has been synthesized and structurally characterized; the Cu atom is five-coordinate and has a square pyramidal configuration. The $\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]^{2-}$ anion uses the CN^{-}ligand cis to the NO^{+} ligand to link to the Cu atom. The $\mathrm{Cu}-\mathrm{N} \equiv \mathrm{C}-\mathrm{Fe}$ linkage is nonlinear, similar to that in other cyano-bridged bimetallic complexes.

Comment

It is well known that the cyanide ion may coordinate through the C atom, acting as a monodentate ligand, or through both the C and N atoms, acting as a bridging ligand. Recently, using $\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]^{2-}$ as a building block, some cyano-bridged polymeric complexes have been prepared for the investigation of the photo-functional (Bellouard et al., 2001; Gu et al., 2001) and semipermeable membrane properties (Mullica et al., 1990) of nitroprusside. Also, there has been much interest in clarifying the structural correlation with the magnetic properties of nitroprusside-bridged complexes. Magnetic studies show that the nitroprusside anion transmits a very weak antiferromagnetic interaction. Tang and co-workers reported a two-dimensional cyano-bridged $\left[\mathrm{Cu}_{2}(\text { oxpn }) \mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]_{n}$ $\left[\mathrm{H}_{2}\right.$ oxpn $=N, N^{\prime}$-bis(3-aminopropyl)oxamide] complex, in which an N atom of the cyano group in $\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]^{2-}$ is coordinated to one of the adjacent $\mathrm{Cu}^{\text {II }}$ ions in $\left[\mathrm{Cu}_{2}(\text { oxpn })\right]^{2+}$ (Chen et al., 1995). The complexes $M(\mathrm{en})_{2} \mathrm{Fe}(\mathrm{CN})_{5}(-$ $n \mathrm{H}_{2} \mathrm{O}$ (where en = ethylenediamine, $M=\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Cu}^{\mathrm{II}}, n=0$ or 1) exhibit one-dimensional chain-like structures, in which weak antiferromagnetic coupling is present through the nitroprusside (Kou et al., 1998; Shyu et al., 1997), whereas $\mathrm{Cu}\left(L^{1}\right)_{2} \mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO}) \cdot n \mathrm{H}_{2} \mathrm{O}$ (where $L^{1}=2$-dimethylaminoethylamine, 1-dimethylamino-2-propylamine, 3,10-bis(2-hy-droxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane and 1,2diaminopropane) are cyano-bridged dinuclear complexes (Zhang et al., 2002). We have been interested in this versatile building block, and recently we prepared a new tetraaza-bicyclo- $\mathrm{Cu}^{\text {II }}$ complex $\left[\mathrm{Cu} L^{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}\left[L^{2}=3\right.$, 7 -bis(2-amino-ethyl)-1,3,5,7-tetraazabicyclo[3,3,2]decane], in which the $\mathrm{Cu}^{\text {II }}$ ion exhibits $4+2$ coordination geometry (He et al., 2003). By reacting the precursor with $\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]^{2-}$ we expect to generate cyano-bridged species.

A displacement ellipsoid plot of the title compound, (I), is illustrated in Fig. 1. The central Cu atom is coordinated by five N atoms, leading to a distorted pyramidal structure with four N atoms from the L^{2} ligand defining the equatorial plane and one N atom from the bridging CN^{-}ligand occupying the axial

Received 7 April 2003 Accepted 8 April 2003 Online 23 April 2003
position. The $\mathrm{Cu}-\mathrm{N}_{\text {equatorial }}$ bond lengths [range 1.998 (2)2.032 (2) \AA A are shorter than the $\mathrm{Cu}-\mathrm{N}_{\text {axial }}$ bond length [2.303 (2) \AA] due to the Jahn-Teller effect for the d^{9} configuration of the $\mathrm{Cu}^{\mathrm{II}}$ ion in a pyramidal environment. The equatorial atoms ($\mathrm{N} 7, \mathrm{~N} 8, \mathrm{~N} 11$ and N 12) show some deviation from coplanarity [largest deviation $0.129(3) \AA]$. The coordination sphere of $\mathrm{Cu}^{\text {II }}$ shows a distortion from square pyramidal (SP) towards trigonal bipyrimidal (TBP), which can be defined by a τ value (where $\tau=1.0$ for a regular TBP and τ $=0.0$ for a regular SP stereochemistry; Brophy et al., 1999). For the coordination environment of Cu in the present complex, a τ value of 0.19 is obtained, emphasizing that the metal centre geometry is much closer to SP than to TBP. The bridging cyanide coordinates to the $\mathrm{Cu}^{\text {II }}$ ion in a bent fashion, with a $\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu}$ bond angle of $141.37(19)^{\circ}$; this is similar to the values in related compounds (Kou et al., 1998; Zhang et al., 2002; Smekal et al., 2000; Mondal et al., 2000). The Fe . . Cu distance through the cyano bridge is 5.027 (1) A.

As usual, the $\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]^{2-}$ moiety exhibits a distorted octahedral structure $\left(\mathrm{C}_{4 v}\right)$, with the four equatorial CN^{-} ligands bent away from the NO^{+}ligand. This is due to the greater electronegativity of the nitrosyl group compared to the cyanide groups. The $\mathrm{C}-\mathrm{Fe}-\mathrm{NO}$ angles are greater than 90°, and consequently the $\mathrm{C}-\mathrm{Fe}-\mathrm{C} 5$ angles are less than 90°. The mean $\mathrm{Fe}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths are 1.938 (3) and 1.141 (3) \AA, respectively. The $\mathrm{Fe}-\mathrm{N} 6$ and $\mathrm{N} 6-\mathrm{O} 11$ bond distances are 1.657 (2) and 1.124 (3) \AA. The $\mathrm{Fe}-\mathrm{C}-\mathrm{N}$ and $\mathrm{Fe}-\mathrm{N}-\mathrm{O}$ bonds are linear, with bond angles ranging from 174.8 (2) to 179.1 (3) ${ }^{\circ}$. These values are in good agreement

Figure 1
A view of the title compound (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level for non-H atoms.
with those of previous reports (Mondal et al., 2000; Shyu et al., 1997). As in other dinuclear bimetallic nitroprussides, the cyanide ligand cis to the NO^{+}ligand serves as a bridging group to connect two metal ions with similar bridging bond angles (Ribas et al., 1984; Zhang et al., 2002).

The water molecules are hydrogen bonded to the nonbridging cyanide N atom and to the primary amine atoms to produce a hydrogen-bonded three-dimensional network; details are given in Table 2.

Experimental

$\mathrm{Cu}\left(L^{2}\right)\left(\mathrm{ClO}_{4}\right)_{2}$ was synthesized as described in the literature ($\mathrm{He} e t$ al., 2003). Slow evaporation of an aqueous solution of $\mathrm{Cu}\left(L^{2}\right)\left(\mathrm{ClO}_{4}\right)_{2}$ and $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (molar ratio, 1:1) at room temperature resulted in red crystals of (I) suitable for single-crystal analysis.

Crystal data

$\left[\mathrm{CuFe}(\mathrm{CN})_{5}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{6}\right)(\mathrm{NO})\right] \cdot \mathrm{H}_{2} \mathrm{O} \quad Z=2$
$M_{r}=525.87$
Triclinic, $P \overline{1}$
$a=9.3360$ (19) £
$b=11.013$ (2) \AA
$c=12.020$ (2) \AA
$\alpha=71.36$ (3) ${ }^{\circ}$
$\beta=81.26(3)^{\circ}$
$\gamma=72.34(3)^{\circ}$
$V=1113.8(4) \AA^{3}$
$D_{x}=1.568 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4565
reflections
$\theta=2.3-30^{\circ}$
$\mu=1.65 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Platelet, red
$0.4 \times 0.2 \times 0.1 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.566, T_{\text {max }}=0.848$
9026 measured reflections
6292 independent reflections 4956 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-13 \rightarrow 8$
$k=-15 \rightarrow 15$
$l=-16 \rightarrow 15$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.031 P)^{2} \\
&+1 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.55 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.091$
$S=0.91$
6292 reflections
280 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Cu}-\mathrm{N} 7$	$1.998(2)$	$\mathrm{Fe}-\mathrm{C} 2$	$1.944(3)$
$\mathrm{Cu}-\mathrm{N} 11$	$2.006(2)$	$\mathrm{Fe}-\mathrm{C} 5$	$1.945(3)$
$\mathrm{Cu}-\mathrm{N} 12$	$2.021(2)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.149(3)$
$\mathrm{Cu}-\mathrm{N} 8$	$2.032(2)$	$\mathrm{N} 6-\mathrm{O} 1$	$1.124(3)$
$\mathrm{Cu}-\mathrm{N} 1$	$2.303(2)$	$\mathrm{C} 2-\mathrm{N} 2$	$1.138(4)$
$\mathrm{Fe}-\mathrm{N} 6$	$1.657(2)$	$\mathrm{C} 3-\mathrm{N} 3$	$1.139(4)$
$\mathrm{Fe}-\mathrm{C} 1$	$1.931(2)$	$\mathrm{C} 4-\mathrm{N} 4$	$1.136(4)$
$\mathrm{Fe}-\mathrm{C} 3$	$1.933(3)$	$\mathrm{C} 5-\mathrm{N} 5$	$1.146(3)$
$\mathrm{Fe}-\mathrm{C} 4$	$1.937(3)$		
$\mathrm{N} 6-\mathrm{Fe}-\mathrm{C} 1$	$91.91(10)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{Fe}$	$174.8(2)$
$\mathrm{N} 6-\mathrm{Fe}-\mathrm{C} 3$	$94.37(13)$	$\mathrm{O} 1-\mathrm{N} 6-\mathrm{Fe}$	$175.3(2)$
$\mathrm{N} 6-\mathrm{Fe}-\mathrm{C} 4$	$97.24(13)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{Fe}$	$178.8(3)$
$\mathrm{N} 6-\mathrm{Fe}-\mathrm{C} 2$	$94.77(13)$	$\mathrm{N} 3-\mathrm{C} 3-\mathrm{Fe}$	$177.4(3)$
$\mathrm{N} 6-\mathrm{Fe}-\mathrm{C} 5$	$175.86(10)$	$\mathrm{N} 4-\mathrm{C} 4-\mathrm{Fe}$	$179.1(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu}$	$141.37(19)$	$\mathrm{N} 5-\mathrm{C} 5-\mathrm{Fe}$	$178.0(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 7-\mathrm{H} 7 A \cdots \mathrm{~N}^{\mathrm{i}}$	0.90	2.25	$3.092(4)$	156
$\mathrm{~N} 7-\mathrm{H} 7 D \cdots 3^{\text {ii }}$	0.90	2.42	$3.295(4)$	163
$\mathrm{~N} 12-\mathrm{H} 12 D \cdots \mathrm{O}^{\mathrm{iii}}$	0.90	2.06	$2.947(4)$	169
$\mathrm{O} 2-\mathrm{H} 200 \cdots \mathrm{~N} 3$	$0.86(5)$	$2.02(5)$	$2.838(4)$	$158(4)$
$\mathrm{O} 2-\mathrm{H} 201 \cdots \mathrm{~N} 4^{\mathrm{iv}}$	$0.83(5)$	$2.08(5)$	$2.881(4)$	$162(5)$
$\mathrm{N} 12-\mathrm{H} 12 C \cdots \mathrm{O}^{\mathrm{ii}}$	0.90	2.78	$3.174(4)$	108

Symmetry codes: (i) $x, y-1, z$; (ii) $1-x, 1-y, 1-z$; (iii) $1+x, y-1, z$; (iv)
$x-1, y, z$.

The H atoms of the water molecule were found in a difference Fourier map and refined isotropically. The H atoms bound to C and N atoms were also located in a difference map and were refined as riding atoms ($\mathrm{C}-\mathrm{H} 0.97 \AA$ and $\mathrm{N}-\mathrm{H} 0.86 \AA$).

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the Natural Science Foundation of China (Nos. 20201008 and 50272034).

References

Bellouard, F., Clemente-Leon, M., Coronado, E., Galan-Mascaros, J. R., Gimenez-Saiz, C., Gomez-Garcia, C. J. \& Woike, T. (2001). Polyhedron, 20, 1615-1619.
Brophy, M., Murphy, G., O’Sullivan, C., Hathaway, B. \& Murphy, B. (1999). Polyhedron, 18, 611-613.
Bruker (2000). SMART (Version 5.6), SAINT (Version 5.6) and SADABS (Version 2.01). Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, Z. N., Wang, J. L., Qiu, J., Miao, F. M. \& Tang, W. X. (1995). Inorg. Chem. 34, 220-225.
Gu, Z. Z., Sato, O., Einaga, Y., Kai, M., Iyoda, T., Fujishima, A. \& Hashimoto, K. (2001). Bull. Chem. Soc. Jpn, 74, 1617-1622.

He, Y., Kou, H.-Z., Li, Y., Zhou, B. C., Xiong, M. \& Li, Y. D. (2003). Inorg. Chem. Commun. 6, 38-42.
Kou, H.-Z., Wang, H.-M., Liao, D.-Z., Cheng, P., Jiang, Z.-H., Yan, S.-P., Huang, X. Z. \& Wang, G.-L. (1998). Aust. J. Chem. 51, 661-665.
Mondal, N., Saha, M. K., Mitra, S., Gramlich, V. \& Fallah, M. S. E. (2000). Polyhedron, 19, 1935-1939.
Mullica, D. F., Tippin, D. B. \& Sappenfield, B. L. (1990). Inorg. Chim. Acta, 174, 129-135.
Ribas, J., Julia, J. M., Aolans, X., Font-Altaba, M., Isalgué, A. \& Tejada, X. (1984). Transition Met. Chem. 9, 57-60.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Shyu, H. L., Wei, H. H. \& Wang, Y. (1997). Inorg. Chim. Acta, 258, 81-86.
Smekal, Z., Travnicek, Z., Marek, J. \& Nadvornik, M. (2000). Aust. J. Chem. 53, 225-228.
Spek, A. L. (2002). PLATON. 2002 Version, University of Utrecht, The Netherlands.
Zhang, K. L., Xu, Y., Wang, Z., Jin, C. M. \& You, X. Z. (2002). Transition Met. Chem. 27, 95-99.

