metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xi Peng,^a Hui-Zhong Kou,^a* Ming Xiong^b and Ru-Ji Wang^a

^aDepartment of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China, and ^bGeosciences Laboratories, China University of Geosciences, Beijing 100083, People's Republic of China

Correspondence e-mail: kouhz@mail.tsinghua.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.041 wR factor = 0.091 Data-to-parameter ratio = 22.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

A cyano-bridged binuclear Cu–Fe complex based on nitroprusside

The title compound, μ -cyano-1:2 κ^2 C:*N*-tetracyano-1 κ C-[3,7-bis(2-aminoethyl)-1,3,5,7-tetraazabicyclo[3,3,2]decane- $2\kappa^4 N^{1,3,5,7}$]-nitrosyl-1 κ *N*-copper(II)iron(II) monohydrate, [CuFe(CN)₅(C₁₀H₂₄N₆)(NO)]·H₂O, has been synthesized and structurally characterized; the Cu atom is five-coordinate and has a square pyramidal configuration. The [Fe(CN)₅(NO)]²⁻ anion uses the CN⁻ ligand *cis* to the NO⁺ ligand to link to the Cu atom. The Cu–N=C–Fe linkage is nonlinear, similar to that in other cyano-bridged bimetallic complexes.

Comment

It is well known that the cyanide ion may coordinate through the C atom, acting as a monodentate ligand, or through both the C and N atoms, acting as a bridging ligand. Recently, using $[Fe(CN)_5(NO)]^{2-}$ as a building block, some cyano-bridged polymeric complexes have been prepared for the investigation of the photo-functional (Bellouard et al., 2001; Gu et al., 2001) and semipermeable membrane properties (Mullica et al., 1990) of nitroprusside. Also, there has been much interest in clarifying the structural correlation with the magnetic properties of nitroprusside-bridged complexes. Magnetic studies show that the nitroprusside anion transmits a very weak antiferromagnetic interaction. Tang and co-workers reported a two-dimensional cyano-bridged $[Cu_2(\text{oxpn})Fe(CN)_5(\text{NO})]_n$ $[H_2 \text{oxpn} = N, N' \text{-bis}(3\text{-aminopropyl}) \text{oxamide}]$ complex, in which an N atom of the cyano group in $[Fe(CN)_5(NO)]^{2-}$ is coordinated to one of the adjacent Cu^{II} ions in [Cu₂(oxpn)]²⁺ (Chen et al., 1995). The complexes $M(en)_2 Fe(CN)_5($ nH_2O (where en = ethylenediamine, $M = Ni^{II}$ and Cu^{II} , n = 0 or 1) exhibit one-dimensional chain-like structures, in which weak antiferromagnetic coupling is present through the nitroprusside (Kou et al., 1998; Shyu et al., 1997), whereas $Cu(L^1)_2Fe(CN)_5(NO) \cdot nH_2O$ (where $L^1 = 2$ -dimethylaminoethylamine, 1-dimethylamino-2-propylamine, 3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane and 1,2diaminopropane) are cyano-bridged dinuclear complexes (Zhang et al., 2002). We have been interested in this versatile building block, and recently we prepared a new tetraazabicyclo- Cu^{II} complex $[CuL^2](ClO_4)_2$ $[L^2 = 3,7$ -bis(2-aminoethyl)-1,3,5,7-tetraazabicyclo[3,3,2]decane], in which the Cu^{II} ion exhibits 4 + 2 coordination geometry (He et al., 2003). By reacting the precursor with $[Fe(CN)_5(NO)]^{2-}$ we expect to generate cyano-bridged species.

A displacement ellipsoid plot of the title compound, (I), is illustrated in Fig. 1. The central Cu atom is coordinated by five N atoms, leading to a distorted pyramidal structure with four N atoms from the L^2 ligand defining the equatorial plane and one N atom from the bridging CN⁻ ligand occupying the axial Received 7 April 2003 Accepted 8 April 2003 Online 23 April 2003

6292 independent reflections

 $R_{\rm int} = 0.017$

 $\theta_{\rm max} = 30.0^{\circ}$

 $h = -13 \rightarrow 8$

 $k = -15 \rightarrow 15$

 $l = -16 \rightarrow 15$

4956 reflections with $I > 2\sigma(I)$

position. The Cu-N_{equatorial} bond lengths [range 1.998 (2)-2.032 (2) Å] are shorter than the Cu-N $_{axial}$ bond length [2.303 (2) Å] due to the Jahn–Teller effect for the d^9 configuration of the Cu^{II} ion in a pyramidal environment. The equatorial atoms (N7, N8, N11 and N12) show some deviation from coplanarity [largest deviation 0.129 (3) Å]. The coordination sphere of Cu^{II} shows a distortion from square pyramidal (SP) towards trigonal bipyrimidal (TBP), which can be defined by a τ value (where $\tau = 1.0$ for a regular TBP and τ = 0.0 for a regular SP stereochemistry; Brophy *et al.*, 1999). For the coordination environment of Cu in the present complex, a τ value of 0.19 is obtained, emphasizing that the metal centre geometry is much closer to SP than to TBP. The bridging cyanide coordinates to the Cu^{II} ion in a bent fashion, with a C1-N1-Cu bond angle of 141.37 $(19)^{\circ}$; this is similar to the values in related compounds (Kou et al., 1998; Zhang et al., 2002; Smekal et al., 2000; Mondal et al., 2000). The Fe $\cdot \cdot \cdot$ Cu distance through the cyano bridge is 5.027 (1) Å.

As usual, the $[Fe(CN)_5(NO)]^{2-}$ moiety exhibits a distorted octahedral structure $(C_{4\nu})$, with the four equatorial $CN^$ ligands bent away from the NO⁺ ligand. This is due to the greater electronegativity of the nitrosyl group compared to the cyanide groups. The C-Fe-NO angles are greater than 90°, and consequently the C-Fe-C5 angles are less than 90°. The mean Fe-C and C-N bond lengths are 1.938 (3) and 1.141 (3) Å, respectively. The Fe-N6 and N6-O11 bond distances are 1.657 (2) and 1.124 (3) Å. The Fe-C-N and Fe-N-O bonds are linear, with bond angles ranging from 174.8 (2) to 179.1 (3)°. These values are in good agreement

Figure 1

A view of the title compound (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level for non-H atoms.

with those of previous reports (Mondal *et al.*, 2000; Shyu *et al.*, 1997). As in other dinuclear bimetallic nitroprussides, the cyanide ligand *cis* to the NO⁺ ligand serves as a bridging group to connect two metal ions with similar bridging bond angles (Ribas *et al.*, 1984; Zhang *et al.*, 2002).

The water molecules are hydrogen bonded to the nonbridging cyanide N atom and to the primary amine atoms to produce a hydrogen-bonded three-dimensional network; details are given in Table 2.

Experimental

 $Cu(L^2)(ClO_4)_2$ was synthesized as described in the literature (He *et al.*, 2003). Slow evaporation of an aqueous solution of $Cu(L^2)(ClO_4)_2$ and Na₂[Fe(CN)₅(NO)]·2H₂O (molar ratio, 1:1) at room temperature resulted in red crystals of (I) suitable for single-crystal analysis.

Crystal data

$CuFe(CN)_5(C_{10}H_{24}N_6)(NO)] \cdot H_2O$	Z = 2
$M_r = 525.87$	$D_x = 1.568 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
$a = 9.3360 (19) \text{\AA}$	Cell parameters from 4565
b = 11.013 (2) Å	reflections
c = 12.020 (2) Å	$\theta = 2.3 - 30^{\circ}$
$\alpha = 71.36 \ (3)^{\circ}$	$\mu = 1.65 \text{ mm}^{-1}$
$\beta = 81.26 \ (3)^{\circ}$	T = 293 (2) K
$\gamma = 72.34 \ (3)^{\circ}$	Platelet, red
$V = 1113.8 (4) \text{ \AA}^3$	$0.4 \times 0.2 \times 0.1 \text{ mm}$

Data collection

```
Bruker SMART CCD area-detector
diffractometer
\varphi and \omega scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
T_{\min} = 0.566, T_{\max} = 0.848
9026 measured reflections
```

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.031P)^2$ $R[F^2 > 2\sigma(F^2)] = 0.041$ + 1P] $wR(F^2) = 0.091$ where $P = (F_o^2 + 2F_c^2)/3$ S = 0.91 $(\Delta/\sigma)_{max} = 0.001$ 6292 reflections $\Delta\rho_{max} = 0.55$ e Å $^{-3}$ 280 parameters $\Delta\rho_{min} = -0.26$ e Å $^{-3}$ H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Cu-N7	1.998 (2)	Fe-C2	1.944 (3)
Cu-N11	2.006 (2)	Fe-C5	1.945 (3)
Cu-N12	2.021 (2)	N1-C1	1.149 (3)
Cu-N8	2.032 (2)	N6-O1	1.124 (3)
Cu-N1	2.303 (2)	C2-N2	1.138 (4)
Fe-N6	1.657 (2)	C3-N3	1.139 (4)
Fe-C1	1.931 (2)	C4-N4	1.136 (4)
Fe-C3	1.933 (3)	C5-N5	1.146 (3)
Fe-C4	1.937 (3)		
N6-Fe-C1	91.91 (10)	N1-C1-Fe	174.8 (2)
N6-Fe-C3	94.37 (13)	O1-N6-Fe	175.3 (2)
N6-Fe-C4	97.24 (13)	N2-C2-Fe	178.8 (3)
N6-Fe-C2	94.77 (13)	N3-C3-Fe	177.4 (3)
N6-Fe-C5	175.86 (10)	N4-C4-Fe	179.1 (3)
C1-N1-Cu	141.37 (19)	N5-C5-Fe	178.0 (2)

Table 2	
Hydrogen-bonding geometry (Å, $^{\circ}$).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N7-H7A\cdots N4^{i}$	0.90	2.25	3.092 (4)	156
$N7 - H7D \cdot \cdot \cdot N3^{ii}$	0.90	2.42	3.295 (4)	163
$N12-H12D\cdots O2^{iii}$	0.90	2.06	2.947 (4)	169
$O2-H200 \cdot \cdot \cdot N3$	0.86 (5)	2.02 (5)	2.838 (4)	158 (4)
$O2-H201\cdots N4^{iv}$	0.83 (5)	2.08 (5)	2.881 (4)	162 (5)
$N12-H12C\cdots O2^{ii}$	0.90	2.78	3.174 (4)	108

Symmetry codes: (i) x, y - 1, z; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 + x, y - 1, z; (iv) x - 1, y, z.

The H atoms of the water molecule were found in a difference Fourier map and refined isotropically. The H atoms bound to C and N atoms were also located in a difference map and were refined as riding atoms (C-H 0.97 Å and N-H 0.86 Å).

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2002); software used to prepare material for publication: *SHELXL*97.

This work was supported by the Natural Science Foundation of China (Nos. 20201008 and 50272034).

References

- Bellouard, F., Clemente-Leon, M., Coronado, E., Galan-Mascaros, J. R., Gimenez-Saiz, C., Gomez-Garcia, C. J. & Woike, T. (2001). *Polyhedron*, 20, 1615–1619.
- Brophy, M., Murphy, G., O'Sullivan, C., Hathaway, B. & Murphy, B. (1999). *Polyhedron*, 18, 611–613.
- Bruker (2000). SMART (Version 5.6), SAINT (Version 5.6) and SADABS (Version 2.01). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Z. N., Wang, J. L., Qiu, J., Miao, F. M. & Tang, W. X. (1995). Inorg. Chem. 34, 220–225.
- Gu, Z. Z., Sato, O., Einaga, Y., Kai, M., Iyoda, T., Fujishima, A. & Hashimoto, K. (2001). Bull. Chem. Soc. Jpn, 74, 1617–1622.
- He, Y., Kou, H.-Z., Li, Y., Zhou, B. C., Xiong, M. & Li, Y. D. (2003). Inorg. Chem. Commun. 6, 38–42.
- Kou, H.-Z., Wang, H.-M., Liao, D.-Z., Cheng, P., Jiang, Z.-H., Yan, S.-P., Huang, X. Z. & Wang, G.-L. (1998). Aust. J. Chem. 51, 661–665.
- Mondal, N., Saha, M. K., Mitra, S., Gramlich, V. & Fallah, M. S. E. (2000). Polyhedron, 19, 1935–1939.
- Mullica, D. F., Tippin, D. B. & Sappenfield, B. L. (1990). *Inorg. Chim. Acta*, **174**, 129–135.
- Ribas, J., Julia, J. M., Aolans, X., Font-Altaba, M., Isalgué, A. & Tejada, X. (1984). Transition Met. Chem. 9, 57–60.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Shyu, H. L., Wei, H. H. & Wang, Y. (1997). Inorg. Chim. Acta, 258, 81-86.
- Smekal, Z., Travnicek, Z., Marek, J. & Nadvornik, M. (2000). Aust. J. Chem. 53, 225–228.
- Spek, A. L. (2002). PLATON. 2002 Version, University of Utrecht, The Netherlands.
- Zhang, K. L., Xu, Y., Wang, Z., Jin, C. M. & You, X. Z. (2002). Transition Met. Chem. 27, 95–99.